Acta Cryst. (1997). C53, 1526-1529

$\mathbf{S b}_{\mathbf{2}} \mathbf{M o O}_{\mathbf{6}}$, a Re-examination

Alicia Castro, \dagger Renée Enjalbert and Jean Galy

Centre d'Elaboration de Matériaux et d'Etudes Structurales, CNRS, 29 rue Jeanne Marvig, BP 4347, 31055 Toulouse CEDEX, France. E-mail: enjalber@cemes.fr
(Received 2 December 1996; accepted 23 April 1997)

Abstract

Single crystals of diantimony molybdenum hexaoxide have been grown by solid-state reaction. This oxide crystallizes as a layered structure, as in the case of the previously reported $\mathrm{Sb}_{2} \mathrm{WO}_{6}$. Mo atoms are located in severely distorted O -atom octahedra while each Sb atom is bonded to five O atoms, three at short distances and two at longer distances, retaining the three-dimensional array.

Comment

Several investigations of the bismuth oxide-based Au rivillius family $\left(\mathrm{Bi}_{2} \mathrm{O}_{2}\right)\left(A_{n-1} B_{n} \mathrm{O}_{3 n+1}\right)$ have been devoted to changes in both structural characteristics and properties $\left(A=\mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}, \mathrm{Pb}^{2+}, \mathrm{La}^{3+}, \mathrm{Bi}^{3+} \ldots\right.$; $B=\mathrm{Fe}^{3+}, \mathrm{Cr}^{3+}, \mathrm{Ti}^{4+}, \mathrm{Nb}^{5+}, \mathrm{Mo}^{6+}, \mathrm{W}^{6+} \ldots$... Recent $\mathrm{pa}-$ pers have shown that other lone-pair cations, such as $\mathrm{Sn}^{\mathrm{II}}, \mathrm{Sb}^{\text {III }}$ or $\mathrm{Te}^{\text {IV }}$, can be partially introduced in the $\mathrm{Bi}_{2} \mathrm{O}_{2}$ layers (Castro, Millan, Martinez-Lope \& Torrance, 1993; Castro, Millan \& Enjalbert, 1995; Millan, Ramirez \& Castro, 1995), or in the particular $n=1$ Aurivillius-like phase, where $\mathrm{Bi}^{\text {III }}$ can be completely replaced by $\mathrm{Sb}^{\text {III }}$ (Castro, Millan, Enjalbert, Snoeck \& Galy, 1994; Ling, Withers, Rae, Schmid \& Thompson, 1996; Ramirez, Enjalbert, Rojo \& Castro, 1997) to obtain $\mathrm{Sb}_{2} \mathrm{WO}_{6}$ and $\mathrm{Sb}_{2}(\mathrm{~W}, \mathrm{~V}) \mathrm{O}_{6-\delta}$ compounds. Indeed, $\mathrm{Sb}_{2} \mathrm{WO}_{6}$ was first described as an ordered intergrowth between $\left[\mathrm{Sb}_{2} \mathrm{O}_{2}\right]_{n}$ and $\left[\mathrm{WO}_{4}\right]_{n}$ perovskitetype layers and was refined from a twinned crystal in the space group $P 1$, with unit-cell parameters $a=$ 5.554 (1), $b=4.941$ (2), $c=9.209$ (3) $\AA, \alpha=90.05$ (3), $\beta=96.98$ (2), $\gamma=90.20(2)^{\circ}$ (Castro, Millan, Enjalbert, Snoeck \& Galy, 1994). Subsequently, following electron-microscopy investigations, this structure was further refined as an enlarged $2 a \times 2 b \times 2 c F$-centred superstructure of the one previously reported, the twinning of crystals being successfully modelled during refinement (Ling, Withers, Rae, Schmid \& Thompson, 1996).

In the paper by Ling et al. (1996), the authors report the synthesis of a new $\mathrm{Sb}_{2} \mathrm{MoO}_{6}$ powder phase,

[^0]giving evidence of its isostructuralism with $\mathrm{Sb}_{2} \mathrm{WO}_{6}$ and proposing the $F 1$ unit cell $a=10.758(1), b=$ 9.673 (2), $c=17.57$ (1) $\AA, \alpha=90.00$ (5), $\beta=96.98$ (3), $\gamma=90.05(2)^{\circ}$. In fact, other authors (Laarif, Theobald, Vivier \& Hewat, 1984) had determined, prior to this proposal, the structure of this oxide by single-crystal Xray diffraction and powder neutron diffraction methods, resulting, respectively, in the unit-cell parameters $a=$ 7.481 (2), $b=7.504$ (2), $c=10.120$ (2) $\AA, \alpha=70.43$ (2), $\beta=70.91(2), \gamma=83.35(2)^{\circ}$, and $a=7.4774(2), b$ $=7.5017(2), c=10.1259(2) \AA, \alpha=70.374(1), \beta=$ $70.889(1), \gamma=83.246(1)^{\circ}$.

To ascertain the true structure of $\mathrm{Sb}_{2} \mathrm{MoO}_{6}$, single crystals were grown by solid-state reaction. From Xray investigations using the precession method, the superstructure of $\mathrm{Sb}_{2} \mathrm{MoO}_{6}$ was clearly shown, giving the enlarged cell and a superstructure similar to those of $\mathrm{Sb}_{2} \mathrm{WO}_{6}$, as demonstrated by transmission electron microscopy experiments. The structure of the title compound has been determined by classic X-ray singlecrystal diffraction methods.

The general framework of $\mathrm{Sb}_{2} \mathrm{MoO}_{6}$ (Fig. 1) maintains the layered arrangement seen for $\mathrm{Sb}_{2} \mathrm{WO}_{6}$ (Castro et al., 1994; Ling et al., 1996), and is formed by antimony-oxygen double layers alternating with molybdenum-oxygen slabs parallel to the (001) plane, which bind together along the [001] direction through $\mathrm{Sb}-\mathrm{O}$ bonds. Mo atoms occupy eight independent positions and each bonds to four O atoms at shorter dis-

Fig. 1. Projection of the crystal structure of $\mathrm{Sb}_{2} \mathrm{MoO}_{6}$ onto the (010) plane.
tances between 1.739 (8) and 1.935 (7) \AA, with an average value $\langle\mathrm{Mo}-\mathrm{O}\rangle=1.816 \AA$, and to two other atoms at longer distances between 2.162 (7) and 2.267 (8) \AA $(\langle\mathrm{Mo}-\mathrm{O}\rangle=2.227 \AA$). The O atoms thus form strongly distorted octahedra. The Mo atoms are shifted out of their centres as shown in Fig. 2; the displacements range from $0.33 \AA$ for Mo7 to $0.36 \AA$ for Mo4. The MoO_{6} octahedra share corners and allow the formation of $\left[\mathrm{MoO}_{4}\right]_{n}$ puckered layers parallel to the (001) plane (Fig. 2).

Fig. 2. Projection onto the (001) plane of one $\left[\mathrm{MoO}_{4}\right]_{n}$ layer showing the tilting of the Mo-O octahedra (above) and the Mo-O bonds (dark lines corresponding to short distances) (below).

There exist 16 unequivalent Sb atoms in the unit cell of the $\mathrm{Sb}_{2} \mathrm{MoO}_{6}$ structure, exhibiting the classic one-sided coordination of cations possessing lone pairs. Each Sb atom is coordinated to three O atoms at short distances, between 1.940 (6) and 2.166 (7) $\AA(\langle\mathrm{Sb}-\mathrm{O}\rangle$ $=2.036 \AA$) and forms, with two of these O atoms, part of a puckered layer; the third O atom belongs to an apex of an octahedra in the $\left[\mathrm{MoO}_{4}\right]_{n}$ slab. The metal-atom
environment is supplemented by two other O atoms at longer distances between 2.304 (7) and $2.806(8) \AA$ $(\langle\mathrm{Sb}-\mathrm{O}\rangle=2.540 \AA)$, joining both $\left[\mathrm{Sb}_{2} \mathrm{O}_{2}\right]_{n}$ layers and the apices of the $\left[\mathrm{MoO}_{4}\right]_{n}$ layer. In all cases, the next shortest $\mathrm{Sb}-\mathrm{O}$ distance is greater than $3.15 \AA$. Fig. 3 shows the coordination of some representative Sb atoms together with the possible location of their associated lone pairs, E. The coordination of Sb atoms must always be represented as $3+2$ where the three short distances are almost regular while the longer distances involve either similar values (e.g. Sb 2 or Sb 12) or different ones (e.g. Sb6 or Sb 10). The location of the lone pair, E, associated with each Sb atom was carried out according to Galy, Meunier, Andersson \& Åström (1975); the SbE distances range from 0.9 to $1.1 \AA$.

Fig. 3. Coordination polyhedra of representative Sb atoms in $\mathrm{Sb}_{2} \mathrm{MoO}_{6}$ including lone pairs, E.

The thermal study of $\mathrm{Sb}_{2} \mathrm{MoO}_{6}$ has highlighted an effect at lower temperatures which could be correlated with a rearrangement of the polyhedra in the same way as for $\mathrm{Bi}_{2} \mathrm{MoO}_{6}$ at low temperatures (van den Elzen \& Rieck, 1973) or high temperatures (Buttrey, Vogt, Wildgruber \& Robinson, 1994). A study of the lowtemperature structure of $\mathrm{Sb}_{2} \mathrm{MoO}_{6}$ is underway.

Finally, as the structure of $\mathrm{Sb}_{2} \mathrm{MoO}_{6}$ is highly complex (72 independent atoms corresponding to 16 $\mathrm{Sb}_{2} \mathrm{MoO}_{6}$ entities) extrapolation of the unit-cell parameters from powder pattern data of a possible nonmonophasic sample may account for the wrong values reported by Ling et al. (1996), while the parameters proposed by Laarif et al. (1984) correspond to a mean structure. Indeed, the matrix $[-1-10,-110,11$ -2] transforms their unit-cell parameters to those of the present structure, multiplying the volume by 4 .

Experimental

Single crystals of $\mathrm{Sb}_{2} \mathrm{MoO}_{6}$ were obtained from a mixture of $\mathrm{Sb}_{2} \mathrm{O}_{3}$ and MoO_{3} oxides in the molar ratio 1.5:1, the excess $\mathrm{Sb}_{2} \mathrm{O}_{3}$ acting as flux. The mixture was ground in an agate mortar and placed in a Pyrex ampoule sealed under vacuum in order to avoid any oxidation of $\mathrm{Sb}^{\mathrm{III}}$ to Sb^{V}. It was heated at 763 K for 24 h and cooled to room temperature at $5 \mathrm{~K} \mathrm{~h}^{-1}$.

Crystal data

$\mathrm{Sb}_{2} \mathrm{MoO}_{6}$
$M_{r}=435.44$
Triclinic
$P \overline{1}$
$a=11.192(2) \AA$
$b=9.9600(10) \AA$
$c=18.282(2) \AA$
$\alpha=90.33(3)^{\circ}$
$\beta=97.03(2)^{\circ}$
$\gamma=90.19(2)^{\circ}$
$V=2022.6(5) \AA^{3}$
$Z=16$
$D_{x}=5.720 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Enraf-Nonius CAD-4 diffractometer $\omega-2 \theta$ scans
Absorption correction: ψ scans (North, Phillips \& Mathews, 1968)
$T_{\text {min }}=0.21, T_{\text {max }}=0.35$
10164 measured reflections 6615 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.107$
$S=1.010$
6615 reflections
410 parameters

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}^{2}\right)+(0.0509 P)^{2} \\
&+15.6700 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.073
\end{aligned}
$$

Mo $K \alpha$ radiation
$\lambda=0.71069 \AA$
Cell parameters from 25 reflections
$\theta=9.11-18.23^{\circ}$
$\mu=13.001 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Parallelepiped
$0.252 \times 0.125 \times 0.094 \mathrm{~mm}$
Red-orange
路

2398 reflections with
$I>2 \sigma(I)$
$R_{\text {int }}=0.018$
$\theta_{\text {max }}=26.97^{\circ}$
$h=-14 \rightarrow 14$
$k=-12 \rightarrow 12$
$l=-23 \rightarrow 23$
6 standard reflections every 200 reflections intensity decay: 0.2%
$\Delta \rho_{\text {max }}=2.61 \mathrm{e}^{-3}$ at $0.35 \AA$ from Sb 2
$\Delta \rho_{\min }=-2.85 \mathrm{e}^{-3}$ at 0.78 Å from Sbll

Extinction correction: SHELXL96 (Sheldrick. 1996)

Extinction coefficient: 0.0142 (2)

Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Selected geometric parameters (\AA)

Mol-O1	1.762 (7)	Sb3-041	2.568 (6)
$\mathrm{Mol-O} 2$	1.778 (7)	Sb4-042	1.971 (7)
Mol-O3	1.832 (7)	Sb4-O43	1.993 (7)
Mol-O4	1.932 (7)	Sb4-O9 ${ }^{\text {¹ }}$	2.144 (7)
Mol-O5	2.205 (6)	Sb4-O44	2.330 (7)
Mol-O6	2.246 (8)	Sb4-O28 ${ }^{1 \prime \prime}$	2.690 (7)
Mo2-07	1.745 (7)	Sb5-O45	1.983 (7)
Mo2-08	1.775 (7)	Sb5-O16	2.043 (7)
Mo2-09	1.820 (7)	Sb5-035"	2.049 (7)
Mo2-O10	1.908 (7)	Sb5-O33 ${ }^{\prime \prime}$	2.557 (8)
Mo2-O11	2.215 (8)	Sb5-O29	2.615 (8)
Mo2--O12	2.249 (6)	Sb6-O46	1.979 (7)
Mo3-O13	1.751 (7)	Sb6-O38 ${ }^{\text { }}$	2.005 (7)

Mo3-O14	1.765 (7)	Sb6-O21	2.097 (7)
Mo3-O15	1.834 (7)	Sb6-037	2.304 (7)
Mo3-O16	1.930 (7)	Sb6-O30 ${ }^{\text {² }}$	2.728 (7)
Mo3-O17	2.225 (7)	Sb7-047	1.978 (7)
Mo3-O18	2.239 (8)	Sb7-O41 ${ }^{\text {¹ }}$	2.039 (6)
Mo4-O19	1.743 (7)	Sb7-O15 ${ }^{\text {'1" }}$	2.154 (7)
Mo4-O20	1.774 (7)	Sb7-O40 ${ }^{\text {"1 }}$	2.337 (7)
Mo4-O21	1.862 (7)	Sb7-031	2.750 (7)
Mo4-O22	1.935 (7)	Sb8-048	1.980 (7)
Mo4-O23	2.224 (6)	Sb8-O22 ${ }^{\text {¹ }}$	2.024 (7)
Mo4-O24	2.267 (8)	Sb8-O44 ${ }^{\prime \prime \prime}$	2.028 (7)
Mo5-O12	1.747 (6)	Sb8-042 ${ }^{\text {¹] }}$	2.520 (8)
Mos-O5	1.770 (6)	Sb8-032 ${ }^{\prime \prime}$	2.584 (8)
Mo5-O25	1.851 (8)	Sb9-037	2.025 (7)
Mo5-026	1.894 (7)	Sb9-034	2.036 (7)
Mo5-O2 ${ }^{1}$	2.173 (7)	Sb9-026	2.051 (7)
Mo5-O8 ${ }^{\text {11 }}$	2.233 (7)	Sb9-O48'"	2.504 (7)
Mo6-O11	1.741 (8)	Sb9-010	2.534 (6)
Mo6-O6	1.757 (8)	Sbl0-O33 ${ }^{1 \times}$	1.980 (8)
Mo6--O27	1.882 (6)	Sbl0-O36	2.025 (7)
Mo6-O28	1.893 (7)	Sb10-O25"	2.166 (7)
Mo6-O7"'	2.231 (7)	Sblo-047 ${ }^{\text {¹4 }}$	2.353 (7)
$\mathrm{Mo6-O}{ }^{11}$	2.244 (7)	Sbll-O39	1.992 (7)
$\mathrm{Mo7-O} 23^{\circ}$	1.760 (6)	Sbll-O42	2.036 (7)
$\mathrm{Mo7-O} \mathrm{l}^{11}$	1.761 (7)	Sbll-O27	2.130 (6)
M07-O29	1.843 (7)	Sbl1-046 ${ }^{\prime \prime}$	2.347 (7)
Mo7-O30	1.864 (7)	Sbl2-040 ${ }^{\text {² }}$	2.016 (7)
Mo7-O20	2.162 (7)	Sbl2-028 ${ }^{\text {¹ }}$	2.050 (7)
Mo7-O14	2.243 (7)	Sbl2-O43	2.060 (7)
Mo8-O24"	1.739 (8)	Sb12-O45 ${ }^{\text {iI }}$	2.490 (7)
Mo8-O18 ${ }^{111}$	1.743 (8)	Sbl2-O4 ${ }^{\text {in }}$	2.494 (7)
Mo8-031	1.849 (8)	Sbl3-O38 ${ }^{\text {a }}$	1.980 (7)
Mo8-O32	1.862 (7)	Sbl3-O45	1.997 (7)
Mo8-O13	2.224 (7)	Sbl3-029	2.149 (7)
Mo8-019	2.243 (7)	Sbl3-043 ${ }^{\prime \prime \prime}$	2.318 (7)
Sbl-O33	1.993 (8)	Sbl4-035 ${ }^{\text {¢ }}$	1.946 (7)
Sbl-O34	2.004 (8)	Sbl4-O46	2.035 (7)
Sbl-O3	2.136 (7)	Sbl4-O30	2.051 (7)
Sbl-O35	2.394 (8)	Sbl4-0.39"	2.483 (7)
Sbl-026	2.680 (8)	Sb14-O16 ${ }^{1 /}$	2.503 (7)
Sb2-036	1.968 (7)	Sbl5-044"'	2.014 (6)
Sb2-037	2.042 (7)	Sb15-047	2.034 (7)
Sb2-010	2.051 (6)	Sbl5-O31	2.058 (7)
Sb2-0.38	2.547 (7)	Sbl5-O36 ${ }^{\text {¹ }}$	2.484 (7)
Sb2-O25 ${ }^{11}$	2.572 (8)	Sb15-O22'"	2.528 (7)
Sb3-O39	1.989 (7)	Sbl6-O41 ${ }^{1 / 1}$	1.940 (6)
Sb3-040	2.011 (7)	Sbl6-O48	1.989 (7)
Sb $3-04{ }^{\prime \prime}$	2.036 (7)	Sbl6-0.32 ${ }^{\text {¹I }}$	2.140 (6)
Sb3-027	2.560 (6)	Sbl6-034 ${ }^{\text {II }}$	2.340 (8)

Symmetry codes: (i) $-x,-y,-z:$ (ii) $1-x,-y,-z ;$ (iii) $1-x, 1-$ $y,-z:$ (iv) $-x, 1-y,-z ;$ (v) $1-x,-y, 1-z:$ (vi) $-x,-y, 1-z ;$ (vii) $1-x, 1-y, 1-z ;$ (viii) $-x, 1-y, 1-z:$ (ix) $1+x, y, z$
The intensities of the measured reflections have been corrected for Lorentz and polarization factors. The Mo and Sb atoms were introduced by analogy with the $\mathrm{Sb}_{2} \mathrm{WO}_{6}$ structure (Castro et al., 1994) and refined isotropically (SHELXL96; Sheldrick, 1996). The 48 independent O atoms were located from difference Fourier summation. Calculations were performed with anisotropic displacement parameters for Mo and Sb atoms, and isotropic displacement parameters for O atoms. For clarity in the figures, the displacement ellipsoids were plotted at arbitrary probability levels.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1993). Cell refinement: CAD-4 EXPRESS. Data reduction: CADAK (Savariault, 1991). Program(s) used to solve structure: SHELXS96 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL96 (Sheldrick, 1996). Molecular graphics: ORTEPII (Johnson, 1976). Software used to prepare material for publication: SHELXL96.

AC thanks the CEMES/CNRS (France) for their kind welcome and the DGES (Spain) for financial support.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: JZ1184). Services for accessing these data are described at the back of the journal.

References

Buttrey, D. J., Vogt, T., Wildgruber, U. \& Robinson, W. R. (1994). J. Solid State Chem. 111, 118-127.
Castro, A., Millan, P. \& Enjalbert, R. (1995). Mater. Res. Bull. 30. 871-882.
Castro, A., Millan, P., Enjalbert, R., Snoeck, E. \& Galy, J. (1994). Mater. Res. Bull. 29, 871-879.
Castro, A., Millan, P., Martinez-Lope, M. J. \& Torrance, J. B. (1993). Solid State Ionics, 63-65, 897-901.
Elzen, A. F. van den \& Rieck, G. D. (1973). Acta Cryst. B29, 24362438.

Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.1/1.2. EnrafNonius, Delft, The Netherlands.
Galy, J., Meunier, G., Andersson, S. A. \& Åström, A. (1975). J. Solid State Chem. 13, 142-159.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Laarif, A., Theobald, F. R., Vivier, H. \& Hewat, A. W. (1984). Z. Kristallogr. 167, 117-124.
Ling, C. L., Withers, R. L., Rac, A. D., Schmid, S. \& Thompson, J. G. (1996). Acta Cryst. B52, 610-615.

Millan, P., Ramirez, A. \& Castro, A. (1995). J. Mater. Sci. Lett. 14, 1657-1660.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Ramirez, A., Enjalbert, R., Rojo, J. M. \& Castro, A. (1997). J. Solid State Chem. 128, 30-37.
Savariault, J. M. (1991). CADAK. Programme de Réductions des Données du CAD-4. CEMES, Toulouse, France.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1996). SHELXL96. Program for the Refinement of Crustal Structures. University of Göttingen, Germany.

Acta Cryst. (1997). C53, 1529-1531

$\mathrm{Cs}_{3} \mathrm{H}\left(\mathrm{SeO}_{4}\right)_{2}$ at 300 K by High-Resolution Neutron Powder Diffraction

Rainer Sonntag, ${ }^{a}$ Rolf Melzer, ${ }^{b}$ Thomas Wessels ${ }^{c}$ and Pablo G. Radaellid ${ }^{d}$
${ }^{a}$ Hahn-Meitner-Institut, Glienickerstr. 100, D-14109 Berlin, Germany, ${ }^{b}$ Institut für Angewandte Geowissenschaften I, TU Berlin/Sekr. BHI, D-10587 Berlin, Germany, 'Laboratorium für Kristallographie, ETH-Zentrum, CH-8092 Zürich, Switzerland, and ${ }^{d}$ Institute Laue-Langevin, I56X, F-38042 Grenoble, France. E-mail: sonntag@hmi.de

(Received 29 October 1996; accepted 23 May 1997)

Abstract

The monoclinic room-temperature structure of tricaesium hydrogen bis[tetraoxoselenate (2-)] was refined from high-resolution neutron powder diffraction data. Special emphasis was given to the precise location of

the H atom and the determination of the hydrogenbond network. A Fourier analysis clearly shows that the H atom is distributed over two symmetry-equivalent positions of half occupancy $[\mathrm{H} \cdots \mathrm{H}=0.52(2) \AA]$ around an inversion centre. The hydrogen bridge is non-linear $\left[\mathrm{O}-\mathrm{H} \cdots \mathrm{O}=173(2)^{\circ}\right]$ with an $\mathrm{O} \cdots \mathrm{O}$ distance of 2.506 (7) Å.

Comment

$\mathrm{Cs}_{3} \mathrm{H}\left(\mathrm{SeO}_{4}\right)_{2}$ (TCHSe) is a member of a family of compounds with the general formula $M_{3} \mathrm{H}\left(\mathrm{XO}_{4}\right)_{2}(M=$ $\left.\mathrm{Rb}, \mathrm{Cs}, \mathrm{K}, \mathrm{NH}_{4} ; X=\mathrm{S}, \mathrm{Se}\right)$. The isostructural rhombohedral proton-conducting phases of this family are well known. The two-dimensional proton conductivity results from the disorder of the H atoms over partly occupied symmetry-equivalent positions. Until now, structural studies of this family were mainly performed using X-ray diffraction (for TCHSe see Merinov, Bolotina, Baranov \& Shuvalov, 1988, 1991; Merinov, Baranov \& Shuvalov, 1990; Ichikawa, Gustafsson \& Olovsson, 1992), making it impossible to clarify the exact positions of the light atoms, which is the basic knowledge required for an understanding of the proton-conducting mechanism.

Our group recently performed the first neutron powder diffraction experiments on $\mathrm{Rb}_{3} \mathrm{H}\left(\mathrm{SeO}_{4}\right)_{2}$ at different temperatures (Bohn et al., 1995; Melzer, Sonntag \& Knight, 1996; Melzer, Wessels \& Reehuis, 1996). The only neutron diffraction study of $\mathrm{Cs}_{3} \mathrm{H}\left(\mathrm{SeO}_{4}\right)_{2}$ until now was of a deuterated specimen, $\mathrm{Cs}_{3} \mathrm{D}\left(\mathrm{SeO}_{4}\right)_{2}$, at 5 K (Belushkin, Ibberson \& Shuvalov, 1993). We have recently reported the first-high resolution neutron powder diffraction experiment on the proton-conducting phase of TCHSe at 473 K (Sonntag, Melzer \& Knight, 1997). In this work, we present a structural investigation of the hydrogen-bond network in TCHSe at room temperature, based on a high-resolution neutron powder diffraction experiment performed on the D2B instrument of the ILL at Grenoble.

TCHSe at room temperature is monoclinic with space group $C 2 / m$. The structure is built from Cs atoms coordinated by O atoms belonging to SeO_{4} tetrahedra. These tetrahedra are linked into isolated pairs by hydrogen bonds. Cs atoms and SeO_{4} tetrahedra form mixed layers parallel to a pseudo-hexagonal plane alternating with layers containing only Cs atoms. For a more detailed description of the structure see Bohn et al. (1995) and Melzer, Wessels \& Reehuis (1996).

The initial parameters for our refinement were taken from Merinov et al. (1988). We started the refinement with the H atom situated on the inversion centre in the middle of the hydrogen bridge and with isotropic displacement parameters for all atoms. As the displacement parameter of the H atom refined to a large value, we then determined anisotropic displacement parameters for the H atom. A much better fit was obtained and the R fac-

[^0]: \dagger Also affiliated to: Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049 Madrid, Spain.

